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Induced representations
and induced Hamiltonian actions

S.ZAKRZEWSKI

Division of MathematicalMethodsin Physics
University of Warsaw

1-loza 74
00-6 82 Warszawa, Poland

Abstract. Given a Hamiltonian action of a closedsubgroup F ofa Lie group G, we
constructa Hamiltonianaction of G (the inducedaction). Our constructionfollows
the well known schemeof inducing unitary representationsdue to Mackey. In
order to bring out the similarity betweenthese constructions we reformulate
Mackey’sschemein termsof ~rquantumreductions,.

I. INTRODUCTION

This paperis a part of aprogramme([11, [21,[31)of studyingrelationsbetween

the geometryof classicalmechanics(i.e. symplecticgeometry)andthegeometry

of quantummechanics(i.e. Hubert spacegeometry).It appearsthat manyfunda-

mental constructionsworking in oneof thosetheoriesareperformablealso in the

secondone.
In Section 2 we presenta (symplectic) concept of an induced Hamiltonian

action in analogy with the known (<<quantum>>)conceptof an inducedunitary

representation.The symplectic induction, as many other symplectic construc-

tions, is basedon thenotion of a coisotropicsubmanifoldandthecorresponding

symplecticreduction.

Describing the induced unitary representations(Section3), we try to preserve

the <<classical>> schemeas muchas possible.We thus considertheconstructionof
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an induced representationas one more exampleof a eunitary reductions. Al-

though no generaltheory of unitary reductionsexists, a preliminaryapproachto

sucha theorywasproposedin somespecialcases(seethe works citedabove).

The present work was initiated after we noticed a similarity between the

construction of a coisotropic submanifold for a homogeneousrepresentation

of a Hamiltonian action, given in [4, 5], and the constructionof the representa-

tion spacefor an inducedrepresentationin specialcasewhen F = G.
Throughout the paper, G denotes a finite-dimensional Lie group, F -- its

closed subgroup,£(G) and £(F) — the correspondingLie algebras.£(G)* and

— their dual spaces,and r, 1: G —* Diff(G) denote two actions of G on

itself givenby

l’gh = hg igh = gli

forg, he G.

2. INDUCED HAMILTONIAN ACTIONS

Let s : F —* aut (P. w) be a left action of F on a symplecticmanifold (P. w).

We assumethat this action admits a Hamiltonian mapping H P-+ £(F)* (see

[4] for terminology).

We denote by J~ (resp.J”) the canonicalHamiltonian mapping corresponding

to the canonicallift? (resp.1): G -+ aut (T*G) of r (resp.1) to T*G. For r~C

we have

Jr(~)_(Tl~*~ (resp.Jl(77)=(7r
1)*77),

where (llg)* (resp. (TeTg~~j)*) is the dual of the linear mapping
11g (resp.

T r ...~) T G -+ T G. and e is the identity in G. In the sequelwe shall use theeg e g
restriction = (r1

1,y of F to F. The correspondingHamiltonian mapping is

given by t” of

T, where t’1’ is the dual of the inclusion : LU’) —* L(G).

Let us considertheproductaction~ = ~ s) of F on (P. ~). whereP = T*G x

x P and ~ is naturally defined. This action admits the Hamiltonian mapping

H:T*GxP~(fl,p)_*oJr(71)+H(P)C.C(F)*.
Let C = H1(O) Then -

1) C is a coisotropic submanifold of (P, ~) invariant under the action ~

because0 E L(F)* is a regularvalueof H (see [4]). C is a subbundleof thebundle

T*G x Pover G x P(with the naturalprojection) andthe fiber

C(gp) = {n C T*G ~ o (TelgY~77 = H(p)}

of C over (g, p) is anaffine subspaceof 7’G. parallel to

ker t” o (Tlg)* = [(Telg) LU’)]°.
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2) The characteristicsof C are orbits of the action of IT~,— the connected
componentof e in F (see[4]).

3) The action of F (resp. lTd) on C is free and proper,since the action rl~
of F (resp. r ~) on G is free and proper. It follows that the quotientspaceC/F

(resp. C/c) admitsa unique differential structuresuchthat thecanonicalprojec-
tion is a submersion([6]). Therefore(F, ~) is globally reducible by C andF1~7=

= C/Fe. Also plnd = C/F is a symplectic manifold in a naturalway (i.e. ~ ~,is
projectibleon C/F) andI~.1isa coveringof plod:

plod = P/(F/F)

4) C is invariantunderleft translationsby the elementsof G,

1= (l,id) :G~aut(P~~)

for 77ET*G, pEP,

sincefT ~ = jr The actionIcommuteswith i~and thereforedefinesa symplectic

action of G on plod The latter action is said to be the actioninducedby s and is

denotedby smd

It is known that a Hamiltonian mappingis constanton characteristics,there-

fore it can be projected on the reduced space.In our case, the Hamiltonian
mappingJ’ correspondingto I is constantevenon orbits of ~in P, since

J
1(s~(’q,p)) = J’(?

77) = J
1(

77) = J’(71, p).

It follows that ~~‘1can be projected on ph~ ands~’~is a Hamiltonian action.

Remarks

(i) If F is connectedand F = G thenwe obtain the constructionof Cpresent-
edin [4].

(ii) ForF = G we haveP~°~~=Pands~
1=s.

3. INDUCED UNITARY REPRESENTATIONS

3.1. Preliminaries

Let dim G = n, dim F = k and let ~r be the modularfunctionon F. Let ~r: G -+

-+ G/F be the canonicalprojection. The transformationof G/F inducedby the

left translation will be denotedby ir(lg). Forg E G we haveir o = ir(lg) a ir.
In this section~zdenotesa strictly positive density on F at the point e E F. In

other words, i :AC(F)~+[0,oo[, ji~’(0)={0} and ~z(tw)=ItIi~(w)for tEIR,

w C A L(F). Theleft-invariant densityon F correspondingto ~ will be denoted
by di.i

1.
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k
Let w E A L([’) be such that p(w) = 1 (—w also will do;the sign is not impor-

tant in the sequel).We denoteby Wr the field of k-covectorson G which corres-

ponds to w via the infinitesimal version of the action r r : F —* Diff (G). The
field w,, isleft-invariantandtangentto the orbitsofrlr, i.e. ir*(w~)= 0.

With eachdensity p on G/F we associatethe densityp ® p on G definedby

(P n P)g(Wr(~)Au) = P~(g)(~*u) for u C n~k ~G.

We havetp up = t(p up) fort>’ 0.

PROPOSITION1. The mappingp -* p up establishesa one-to-onecorrespondence

betweendensitieson G/Fanddensities~ on G satisfying

(I) r*.i~=~r(y)~ for 7EF.

This mappingcommuteswith left translations:

l*(pup)=pulr(i)*p for gEG.

Proof Densitiesof the form p u p satisfy (1) since

(r*1(p ®p))g(w~(~)Au) = (p ®p)g.y(r;~’wr Ar;~’u)=

=(pup)g~(det(Ad_1)w~Aç*1U)=IdetAd~1I(P®P)g7(wrAry*’U)

= or(7)Pir(g)~y(1r*c*’l4) = (Sr(7)Pn(g)(~*U)= ~ up)5(w~(g)A u).

Conversely,if ~ satisfies(1) then theequality

Pn(g)(7T*u) = ~5(w~(g)A u)

definescorrectly a densityp on G/F such that ~ = p up. The last assertionof
thepropositionfollows from the left-invarianceof Wr• U

We denoteby ~ (G) the spaceof smoothhalf-densitieswith compactsupports

on G and by L
2(G) the completion of ~(G) with respectto the naturalscalar

product~~‘I~‘~G= fG~ \11•

3.2. Inducedrepresentations:theproblemof reduction

Let U : F -÷ aut(V, (~‘)~,) be a unitary representationof F in a Hilbert space
V.

Let R (resp. L) : G —* aut L2(G) denote the canonicallift of r (resp. 1) to
L2(G),i.e.

R t,D=r*_ ~1i (resp.L i/1=l*
1clI) forgEG,iJIEL

2(G).
g g g g
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Let us considerthe productrepresentation~y-+ U.> = R.>® U.> of F in V = L2(G)~
~ V (g~denotesthe usual tensorproduct of Hubert spaces).Roughly speaking,

the inducedrepresentationis the restrictionof the representationg -+ Lg u id to

the subspaceof vectors which areinvariant under U (sucha subspacewould be
invariant for Lg uid since L commuteswith R). The <<only>> problem is that

in general there are no vectorsinvariant under U in V (unlessF is compact).
The aboveproblemis typical for a quantumanalogueof the classicalsymplec-

tic reduction. In our previouspapers we used <<Gelfand triples>> to solve such

problems.We observedthat <<reducedHilbert spaces>>can be constructedfrom
subspacesof generalizedvectors.The representationspaceof the inducedrepre-
sentation has to be constructed like in the symplectic case— via reduction.
Elementsof this Hilbert spacewill be representedby <<generalizedvectorsin

Vs invariantunderU.

3.3. Gelfandtriple

U acts naturally on spaceslargerthan V. An exampleof sucha spacecanbe

constructedas follows. Let ~ (G, V) denote the spaceof smoothhalf-densities
on G with compactsupportsandwith valuesin V. Wehave~(G, V) = ~(G) ~ V

(see[7]), ~(G) and~ (G, 17) beingequippedwith their usualtopologies.~(G, 17)

is a densesubspaceof V (the elementsof V may be representedas (classesof

measurable)square-integrablehalf-densitieson G with values in 17). The scalar

productof ~, ~liC ~(G, V) is given by

~~=f~~

G

Let ~ (G, J7)X denotethe spaceof continuousanti-linearfunctionalson ~(G, V)
(~(G,17) can be identified with the spaceof continuouslinear mapping from

~(G) to V, see [7]). ThevalueofTE~(G,VYon s,1JE~(G,V)willbedenoted
by < i,ti I). Now V can be identified with a linear subspaceof ~(G, 17)X• The

inclusiona: V-+ ~ (G, 17)x is given by

for hEV,t,1iE~(G,V).

Foreach ‘y C F, U.> maps~ (G, F) on itself. We denotethe inverseof the corres-
pondingadjoint transformationof~(G,V)X by thesameletterbecauseit extends
the original U. Moreexactly,we put

for TE~(G,F)X,~E~(G,F).

In the sequelwe shallusetheGelfandtriple
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~(G,F)cVc~(G.V)x

in our constructionof thereducedspace.

3.4. The reducedspace as a subspaceof~(G,V)x

The idea is to choosea subspaceof sufficiently regularelementsof ~(G, F)X

which are invariant under ~7 and try to definea G-invariant scalarproductfor

them. To be specific, let us considerthe space~(G, 17) of smoothhalf-densities
on G with values in V. Proposition 1 suggeststo considernot strictly invariant

elementsof ~(G, 17) but ratherelementssatisfying

(2) ~ —.b~(y)~li for ‘yE F.

For suchan elementv~’~~‘ I ~v satisfies(1). Let ~Ind be the subspaceof ~(G, 17)

composedof elements~i satisfying(2) and such that (~Li tjj)
1,,/p hasa compact

support. Here ~ -÷ ~/p denotes the inverse of the mapping p -÷p up. For ~.

lIE 1d we put

1G/r

This is a G-invariantscalarproduct:

(LgøILg~)p=f (Lg~ILg~)v/P=fl*
1~ØI~)vIp

G/l’ G/F

=1 ~(l)*((~I~)/P)=f
G/r G/r

We denoteby Vbnd the completionof ~nd with respectto ( . . )>~.The representa-

tion g -÷ Lg of G in ~ gives rise to a representationof G in Vh~,called the
inducedrepresentation.

3.5. Theprojectionoperatorassociatedwith thereduction

In the caseof compactF we have the projection on the subspaceof invariant
vectors,given by

(3) PMf ~dp,(’y)
I’

(in this casep is fixed by the conditionf~.dp1 (y) = 1).
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A formula of this kind can be usedalso in a generalcase,providedwe apply

it to sufficiently regular vectors.The rangeof p~is then composedof certain

generalizedvectors. In the casewhen F is not unimodularwe must modify (3)
in order to get (at least formally) a self-adjoint expression.The right formula

is the following:

p fo(
7)~1/2 Udp,(’y).

Indeed,formally wehave -

p*

=f6(~)h12 ~6~(y)_1dp1(7) = p~.

Vectorsfrom the rangeof p~satisfy(2).
Now we specify the domain of ~ It is easyto provethat for il/ C ~(G, F)

the integral

(4) p~ f~(7)_1/2~ ~ dp~(’y)

defines pointwise a smooth half-density on G with values in V. Therefore
p~:~(G, F) -÷ C ~(G, V)x. It was shown in [7] that p~(~(G,F)) =

Let us notice the following propertiesof

~Jp=6(y)pu=~(y)hl2p for ‘yEF

and

(5) LgPp = Pp Lg for g C G.

PROPOSITION2. Jf~,iIiE~(G,~

Proof Weuse the following version of the Fubini theorem:

f p=fG

1G/r
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wherep is a smoothdensitywith compactsupport on G and

P~’~= 6~(’yylr*1pdp1(’y)

~ satisfies(1)). We obtain

~

But

~

and

~

= (R~ U_1~~(y)’
12p~~ = (y)112(U~I Pp ~v’

hence

~

COROLLARY. I p ) is a positivecontinuousHermitianform on ~ (G, F). •

3.6. Thereducedspaceascompletionof aquotient spaceof ~(G, V)

One can constructa Hubert spaceusing the Hermitian positive form I r~
on ~ (G, F) in a standard way, as the completion of the quotient space
~(G, F)/kerp with respect to the induced(non-degenerate)Hermitian form.
The projection operatorp,~definesa bijection betweenthe quotientspace and
~nd~ Proposition 2 shows that this bijection preservesthe scalarproduct. By

formula (5) ker p~and the form p~~) are invariant underLg~HenceLg can
be projected on the quotient space.This givesan alterI~ative(equivalent)descrip-

tion of theinducedrepresentation.

3.7. Concludingremarks

We summarizethis sectionas follows. In courseof makingtheanalogybetween
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the classicaland the quantum case more explicit, we have found the correct
condition for the functions belonging to the representationspace(i.e. equation
(2)). We intendedto find a simplekey to abetterunderstandingof this condition.
Wehaveobtainedthe conditionin two different ways:

(i) asking to what objectson G therecorrespondthe densitieson G/F(Prop.
1).

(ii) looking for a positive (in particularself-adjoint)operatorof projectionon

(almost)invariantvectors.
Thisprojection is given by formula(4) which canbe written also in the follow-

ing form

p~= Udp dp=(dp~dp,)”2,
1r

where dp~(y)= dp
1(’y~)is the right-invariantmeasureon F. The measuredp

is invariantunderreflectiony ~
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